تحليل عاملي

به منطو پي بردن به متغيرهاي زير بنايي يك پديده يا تلخيص مجموعه اي از داده ها از روش تحليل عاملي استفاده مي‌شود. داده هاي اوليه براي تحليل عاملي، ماتريس همبستگي بين متغيرها است. تحليل عاملي، متغيرهاي وابسته از قبل تعيين شده اي ندارد. موارد استفاده تحليل عاملي را به دو دسته كلي مي‌توان تقسيم كرد: 

الف) مقاصد اكتشافي   ،   ب) مقاصد تاييدي

موارد استفاده اكتشافي نيز به دو رويكرد كلي تقسيم مي‌شود:

مواردي كه هدف آن پيدا كردن متغيرهاي مكنون يا سازه هاي يك مجموعه متغير اندازه گيري شده است. براي نيل به اين هدف از روش تحليل عامل مشترك (يا تحليل عامل اصلي) و با استفاده از ماتريس همبستگي يا كواريانس متغيرهاي اندازه گيري شده (نمره سوالات يك آزمون يا ريز نمرات آزمون ها) استفاده مي‌شود. از لحاظ نظري متغيرهاي مكنون يا سازه ها علل زيربنايي متغيرهاي اندازه گيري شده است. رگرسيون متغيرهاي اندازه گيري شده روي متغيرهاي مكنون وزن هايي فراهم مي آورد كه بارهاي عاملي ناميده مي‌شود. تحليل عامل مشترك، واريانس هر متغير اندازه گيري شده را به دو واريانس مشترك و واريانس اختصاصي افراز مي‌كند. واريانس مشترك، تغييرات مشترك متغيرهاي اندازه گيري شده را با متغيرهاي مكنون نمايان مي‌كند.

در موارد اكتشافي كه هدف تلخيص مجموعه اي از داده ها باشد، از تحليل مولفه هاي اصلي استفاده مي‌شود.

در تحليل مولفه هاي اصلي، واريانس كل متغيرهاي مشاهده شده تحليل مي‌گردد. ماتريس همبستگي متغيرهاي اندازه گيري شده داراي قطر اصلي 1  است. در حالي كه در تحليل عامل مشترك در قطر اصلي ماتريس همبستگي ميزان اشتراك (واريانس مشترك متغير اندازه گيري شده و متغيرهاي مكنون) قرار مي‌گيرد. وقتي ميزان اشتراك به عدد يك نزديك باشد نتايج تمام روش هاي اكتشافي با نتايج مولفه هاي اصلي مشابه خواهد بود.

در تحليل مولفه هاي اصلي، بر عكس تحليل عامل مشترك، مولفه ها طوري برآورد مي‌شود تا واريانس متغيرهاي مشاهده شده را در كمترين ابعاد نشان دهد و مولفه هاي اصلي در واقع مجموع موزون متغيرهاي مشاهده شده است. به عبارت ديگر در تحليل مولفه هاي اصلي، متغيرهاي مشاهده شده علل متغيرهاي تركيبي (مولفه ها) مي‌باشد.

در تحليل هاي عاملي تاييدي، كه هدف پژوهشگر تاييد ساختار عاملي ويژه اي مي باشد، درباره تعداد عامل ها به طور آشكار فرضيه هاي بيان مي‌شود و برازش ساختار عاملي مورد نظر در فرضيه با ساختار كواريانس متغيرهاي اندازه گيري شده مورد آزمون قرار مي‌گيرد.

تحليل عاملي را نيز بر حسب نمونه يا جامعه بودن آزمودني ها و متغيرها به دو دسته ي توصيفي و استنباطي تقسيم مي‌كنند.

جدول زير انواع تكنيك هاي استخراج عامل ها را بر حسب اكتشافي- تاييدي و توصيفي- استنباطي نشان مي‌دهد:

نوع تحليل

توصيفي

استنباطي

اكتشافي

- مولفه هاي اصلي

- عامل مشترك (عامل اصلي)

- تحليل تصوير

- تحليل حداقل مانده

 

- تحليل عاملي متعارف

- حداكثر درست نمايي

- تحليل عاملي آلفا

تاييدي

- چند گروهي

- Linear Structural Relationships

  يا  LISREL

- حداكثر درست نمايي تاييدي

- LISREL

 

ويژگيهاي لازم ماتريس همبستگي براي تحليل عاملي

ماتريس داده هايي كه روي آن ها تحليل عاملي صورت مي‌گيرد بايد داراي پنج خصيصه زير باشد:

- تركيب ماتريس داده ها. اگر محققي بخواهد ابعاد مشتركي بين چند مقياس اندازه گيري پيدا كند بايد تمام اندازه ها روي نمونه واحدي به دست آمده باشد.

- حجم نمونه. براي هر متغير 5 تا 10  نمونه و به طور كلي در مجموع تا حداكثر 300 نمونه توصيه شده است. مثلا اگر منظور پژوهشگر تحليل عاملي براي 10 متغير باشد، حداقل بايد يك نمونه 50 تايي انتخاب كند.

- شاخص رابطه. معمول ترين شاخص رابطه ضريب همبستگي است. منظور از ضريب همبستگي، ضريب همبستگي پيرسون است. بديهي است كه مفروضه اصلي در محاسبه اين ضريب همبستگي وجود يك توزيع دو متغيري نرمال است. چنانچه  

 

- مستقل بودن اندازه گيري: هر نوع وابستگي متغيرها به يكديگر سبب بالا رفتن همبستگي بين آن‌ها مي‌شود و سبب مي‌شود كه اين متغيرها در عامل واحدي ظاهر شود .  از جمله مواردي كه اين وابستگي صورت مي‌گيرد موقعي است كه از نمرات زير مقياسها و نمره كل مقياس در تحليل استفاده شود ( مثلا نمره كل بهره هوشي ، نمره كلامي بهره هوشي ، نمره كلاسي بهره هوشي تحليل شود). يا نمرات زير مقياس ها ويا نمرات كل بايد در تحليل وارد شود. مقياس هايي كه در آن‌ها بعضي از سوالات يا ماده هاي آزمون مشترك است نيز وابستگي ايجاد مي‌كند.

 

معني داري ماتريس

ماتريس داده ها براي تحليل عاملي بايد حاوي اطلاعات معني داري باشد. معني داري اطلاعات موجود در يك ماتريس از طريق آزمون مربع كاي بارتلت (Bartlett) صورت مي‌گيرد. معني دار بودن آماره كي دو (مربع كاي) و آزمون بارتلت حداقل شرط لازم براي تحليل عاملي است. در اين آزمون بايد آماره زير محاسبه گردد:

كه در آن:

n   تعداد آزمودنيها

p   تعداد متغيرها

|R|  مقدار مطلق دترمينان ماتريس همبستگي

درجه آزادي اين   برابر با  است.

در آزمون بارتلت فرض صفر اين است كه متغيرها فقط با خودشان همبستگي دارند. رد فرض صفر  حاكي از آن است كه ماتريس همبستگي داراي اطلاعات معني دار است و حداقل شرايط لازم براي تحليل عاملي وجود دارد. اين آزمون را آزمون كرويت نيز گويند.

 

مراحل اجراي تحليل عاملي

براي اجراي يك تحليل عاملي چهار گام اساسي ضرورت دارد:

1- تهيه يك ماتريس همبستگي از تمام متغيرهاي مورد استفاده در تحليل و براورد اشتراك

2- استخراج عامل ها

3- انتخاب و چرخش عامل ها براي ساده تر ساختن و قابل فهم تر كردن ساختار عاملي

4- تفسير نتايج